Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices.

نویسندگان

  • N Astman
  • M J Gutnick
  • I A Fleidervish
چکیده

Effects of the protein kinase C activating phorbol ester, phorbol 12-myristate 13-acetate (PMA), were studied in whole cell recordings from layer V neurons in slices of mouse somatosensory neocortex. PMA was applied intracellularly (100 nM to 1 microM) to restrict its action to the cell under study. In current-clamp recordings, it enhanced neuronal excitability by inducing a 10- to 20-mV decrease in voltage threshold for action-potential generation. Because spike threshold in neocortical neurons critically depends on the properties of persistent Na+ current (INaP), effects of PMA on this current were studied in voltage clamp. After blocking K+ and Ca2+ currents, INaP was revealed by applying slow depolarizing voltage ramps from -70 to 0 mV. Intracellular PMA induced a decrease in INaP at very depolarized membrane potentials. It also shifted activation of INaP in the hyperpolarizing direction, however, such that there was a significant increase in persistent inward current at potentials more negative than -45 mV. When tetrodotoxin (TTX) was added to the bath, blocking INaP and leaving only an outward nonspecific cationic current (Icat), PMA had no apparent effect on responses to voltage ramps. Thus PMA did not affect Icat, and it did not induce any additional current. Intracellular application of the inactive PMA analogue, 4 alpha-PMA, did not affect INaP. The specific protein kinase C inhibitors, chelerythrine (20 microM) and calphostin C (10 microM), blocked the effect of PMA on INaP. The data suggest that PMA enhances neuronal excitability via a protein kinase C-mediated increase in INaP at functionally critical subthreshold voltages. This novel effect would modulate all neuronal functions that are influenced by INaP, including synaptic integration and active backpropagation of action potential from the soma into the dendrites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAPID COMMUNICATION Activation of Protein Kinase C Increases Neuronal Excitability by Regulating Persistent Na Current in Mouse Neocortical Slices

Astman, Nadav, Michael J. Gutnick, and Ilya A. Fleidervish. duction in dendritic action-potential propagation (Colbert Activation of protein kinase C increases neuronal excitability by and Johnston 1998; Tsubokawa and Ross 1997). regulating persistent Na current in mouse neocortical slices. J. NeuIn the present study, we sought to determine the effect rophysiol. 80: 1547–1551, 1998. Effects of ...

متن کامل

Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism.

The serotonin (5-HT) innervation of the prefrontal cortex (PFC) exerts a powerful modulatory influence on neuronal activity in this cortical region, although the mechanisms through which 5-HT modulates cellular activity are unclear. Voltage-dependent Na+ channels are one potential target of 5-HT receptor signaling that have wide-ranging effects on activity. Molecular and electrophysiological st...

متن کامل

Increased Persistent Sodium Current Causes Neuronal Hyperexcitability in the Entorhinal Cortex of Fmr1 Knockout Mice.

Altered neuronal excitability is one of the hallmarks of fragile X syndrome (FXS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Here, we find that pyramidal cells in the entorhinal cortex of Fmr1 KO mice, an established FXS mouse model, display a decreased AP threshold and increased neuronal excitability. The AP threshold changes in Fmr1 KO mice are ca...

متن کامل

Excitatory roles of protein kinase C in striatal cholinergic interneurons.

Protein kinase C (PKC) plays critical roles in neuronal activity and is widely expressed in striatal neurons. However, it is not clear how PKC activation regulates the excitability of striatal cholinergic interneurons. In the present study, we found that PKC activation significantly inhibited A-type potassium current (I(A)), but had no effect on delayed rectifier potassium currents. Consistentl...

متن کامل

Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro.

Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium (Na(P)) current in mouse neocortical slices is associated with cellular bursting and our data suggest that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 80 3  شماره 

صفحات  -

تاریخ انتشار 1998